
IoT Internet Protocols

黃仁竑教授

國立中正大學資工系

Outline
n IPv6
n 6LoWPAN
n RPL
n CoAP
n MQTT
n XMPP

2

IoT Protocol Stack

Source: https://www.postscapes.com/internet-of-things-protocols/
https://www.slideshare.net/butler-iot/butler-project-overview-13603599

https://www.postscapes.com/internet-of-things-protocols/

IoT Protocol Stack

Source: https://www.slideshare.net/MarcoPicone/the-android-platform-in-the-era-of-internet-of-things-droidcon-italy-2014

IoT vs. Internet Protocol Stack

Source https://www.linkedin.com/pulse/emerging-open-standard-protocol-stack-iot-aniruddha-chakrabarti

IoT 2.0 Interoperability

Source: https://www.slideshare.net/michaeljohnkoster/opensourcestackforiot-131017193902phpapp02

Copyright reserved 2012 (Ren-Hung Hwang) 7

Internet Protocol Version 6
(IPv6)

Ren-Hung Hwang

Copyright reserved 2012 (Ren-Hung Hwang) 8

IPv6

n Problems with IPv4
q Shortage of address space
q Lack of Quality of Service guarantee

n New features of IPv6
q Enlarge address space
q Fixed header format helps speed processing/forwarding
q Better support for Quality of Service
q Neighbor discovery and Auto-configuration
q Hierarchical address architecture (improved address

aggregation)
q new “anycast” address: route to “best” of several replicated

servers

IPv6 Header

Copyright reserved 2012 (Ren-Hung Hwang) 10

IPv6 Header

n Version: 6
n Traffic class:

q identify class of service
q E.g., DiffServ (DS codepoint)

n The 6 most-significant bits are used for DSCP

n Flow Label:
q identify datagrams in same “flow”

n Next header:
q identify upper layer protocol for data

Copyright reserved 2012 (Ren-Hung Hwang) 11

Changes from IPv4 (1/3)

 16 0 4 24 31
Version Traffic Class

12
Flow Label

Payload Length Next Header Hop Limit

Source Address (16 octects)

Destination Address (16 octects)

 0 8 16 24 31

Version

4
Header
Length

Type of
Service

Packet Length (bytes)

Data

Identifier Flags 13-bit Fragmentation Offset

Time-to-Live Upper Layer
 Protocol Header Checksum

Source IP Address

Destination IP Address

Options

Copyright reserved 2012 (Ren-Hung Hwang) 12

Changes from IPv4 (2/3)

n Expanded Addressing Capabilities
q from 32 bits to 128 bits (more level and nodes)
q improve multicast routing (“scope” field)
q “anycast address”: send a packet to any one of a

group of nodes
n Header Format Simplification

q reduce bandwidth cost
n Extensions

q more flexibility

Copyright reserved 2012 (Ren-Hung Hwang) 13

Changes from IPv4 (3/3)

n Checksum
q removed to reduce processing at routers

n Fragmentation
q Not allowed at intermediate routers

6LoWPAN(RFC 6282):
IP on IEEE 802.15.4
Low-Power Wireless Networks

黃仁竑教授

國立中正大學資工系

Outline

n What is 6LoWPAN?
n Motivation and Goal
n Key Elements
n Topology
n 6LoWPAN Adaptation Layer

15

What is 6LoWPAN?

n 6LoWPAN is an acronym of IPv6 over Low
power Wireless Personal Area Networks.

n It is designed by the 6LoWPAN working
group in IETF (Internet Engineering Task
Force).

n RFC 4919 (6LoWPAN Overview,
Assumptions, Problem Statement, and Goals)
included a detailed review of requirements,
which were released in 2007.

16

IETF Low Power Lossy Network
Related Working Groups

IEEE Wireless Standards

6LoWPAN WG Documents

19

draft-ietf-6lowpan-btle-11
Transmission of IPv6 Packets over BLUETOOTH
Low Energy

2012-10-12

RFC 4919
IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANs): Overview, Assumptions,
Problem Statement, and Goals

2007-08

RFC 4944*
Transmission of IPv6 Packets over IEEE 802.15.4
Networks

2007-09

RFC 6282
Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks

2011-09

RFC 6568
Design and Application Spaces for IPv6 over Low-
Power Wireless Personal Area Networks
(6LoWPANs)

2012-04

RFC 6606
Problem Statement and Requirements for IPv6 over
Low-Power Wireless Personal Area Network
(6LoWPAN) Routing

2012-05

RFC 6775
Neighbor Discovery Optimization for IPv6 over Low-
Power Wireless Personal Area Networks
(6LoWPANs)

2012-11
new

*RFC 4944 (Proposed Standard) Updated by RFC 6282, RFC 6775

http://datatracker.ietf.org/doc/draft-ietf-6lowpan-btle/
http://datatracker.ietf.org/doc/rfc4919/
http://datatracker.ietf.org/doc/rfc4944/
http://datatracker.ietf.org/doc/rfc6282/
http://datatracker.ietf.org/doc/rfc6568/
http://datatracker.ietf.org/doc/rfc6606/
http://datatracker.ietf.org/doc/rfc6775/

6LoWPAN WG Documents

20

RFC 7388 Definition of Managed Objects for IPv6 over Low-Power
Wireless Personal Area Networks (6LoWPANs)

2014-10

RFC 7400 6LoWPAN-GHC: Generic Header Compression for IPv6
over Low-Power Wireless Personal Area Networks
(6LoWPANs)

2014-11

RFC 8025 IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN) Paging Dispatch

2016-11

RFC 8138 IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN) Routing Header

2017-4

RFC 8180 Minimal IPv6 over the TSCH Mode of IEEE 802.15.4e
(6TiSCH) Configuration

2017-5

Motivation

n Traditionally, battery-powered networks or low-
bitrate networks, such as most fieldbus
networks or 802.15.4 were considered
incapable of running IP.

n In the home and industrial automation networks
world, the situation compares to the situation of
corporate LANs in the 1980s:
“should I run Token-Ring, ATM or IPX/SPX?”
translates to “should I run ZigBee, LON or
KNX?”

21

Motivation

n IP, with its concept of layer 3 routing and
internetwork technology, has made those
debates about incompatible networks
obsolete:
q the vast majority of LANs and WANs today run IP,

and many people can hardly remember which
layer 2 technology their IP networks are running
on.

22

Motivation

n Almost any layer 2 technology can be used
and will simply extend the IP internetwork.

n The same transition to IP is now happening in
the home and industrial automation worlds.
6LoWPAN and RPL have made this possible.

23

Goal of 6LowPAN

n Traditional way: 2-stage n End-to-end IP
transmission

24

WSN gateway

IP packet

propriety WSN
packet (e.g., ZigBee)

IPv6 gateway
(adaption)

IPv6 packet,
all the way
to IoT devices

Constraints of LoWPAN

n Low-cost nodes communicating over multiple
hops to cover a large geographical area

n Operate unattended for years on modest
batteries.

n Capabilities are more limited
q small frame sizes, low bandwidth, and low transmit

power, limited memory and compute power.
n Proprietary protocols and link-only solutions,

presuming that IP was too memory and
bandwidth-intensive

Key Factors for IP over 802.15.4

n Header
q Standard IPv6 header is 40 bytes [RFC 2460]
q Entire 802.15.4 MTU is 127 bytes [IEEE 802.15.4]
q Often data payload is small

n Fragmentation
q Interoperability means that applications need not know

the constraints of physical links
q IP packets may be large, compared to 802.15.4 max

frame size
q IPv6 requires all links support 1280 byte packets [RFC

2460]

Key Factors for IP over 802.15.4

n Allow link-layer mesh routing under IP topology
q 802.15.4 subnets may utilize multiple radio hops per

IP hop
q Similar to LAN switching within IP routing domain in

Ethernet
n Allow IP routing over a mesh of 802.15.4 nodes

q Options and capabilities already well-defined
q Various protocols to establish routing tables

Topology

n 6LoWPAN network can be organized around
three topologies:
q Star topology
q Meshed
q Routed

28

Star topology

n All sensor nodes can reach and are
reachable from the LBR(LoWPAN Border
Router)

29

Meshed

n Nodes are organized at Layer 2 in order to
relay frames toward the destination.

n From point of view of the Internet, a meshed
network is similar to an Ethernet network
where every node shares the same prefix.

n 6LoWPAN refers to that technology as mesh-
under (MU).

30

Routed

n Nodes act as routers and forward packets
toward the destination.

n Nodes acting as a router inside the LoWPAN
network and not directly connected to the
Internet are called LoWPAN routers(LRs).

n 6LoWPAN refers to that technology as route-
over(RO). The best example is RPL protocol.

31

32

6LoWPAN Protocol Stack

6LoWPAN Key Elements

n 6LoWPAN introduces an adaptation layer
between the IP stack’s link and network
layers to enable efficient transmission of IPv6
datagrams over 802.15.4 links
q Provides header compression to reduce

transmission overhead
q Fragmentation to support the IPv6 minimum

MTU requirement
q Support for layer-two forwarding to deliver and

IPv6 datagram over multiple radio hops

Key Concept

n Use of stateless or shared-context
compression to elide adaptation, network,
and transport layer header fields
q Compressing all three layers down to a few bytes.

n It’s possible to compress header fields to a
few bits when we observe that they often
carry common values, reserving an escape
value for when less-common ones appear.

IEEE 802.15.4 Frame Format
Octets:2 1 0/2 0/2/8 0/2 0/2/8 0/5/6/10/14 Variable 2

Frame
Control

Sequence
Number

Dest.
PAN
Identifier

Dest.
Address

Source
PAN
Identifier

Source
Addr.

Auxiliary
Security
Header

Frame
Payload

FCS

Addressing fields MAC
Payload

MFR

MHR

Typical 6LoWPAN Header Stacks

6LoWPAN Format Design

n Orthogonal stackable header format
n Almost no overhead for the ability to interoperate and scale.
n Pay for only what you use

6LoWPAN – The First Byte
n Coexistence with other network protocols over same link
n Header dispatch - understand what’s coming

6LoWPAN – IPv6 Header

Dispatch Value Bit Pattern

Dispatch Value Bit Pattern

IPv6 Header Compression

HC1 Compressed IPv6 Header [4944]

LOWPAN_HC1 (common
compressed header encoding)
n The address fields encoded by "HC1

encoding" are interpreted as follows:
q Source/Destination Prefix compression

n PI(0): Prefix carried in-line (Section 10.3.1).
n PC(1): Prefix compressed (link-local prefix assumed).

q Source/Destination Interface ID compression
n II(0): Interface identifier carried in-line (Section 10.3.1).
n IC(1): Interface identifier elided (derivable from the

corresponding link-layer address).

6LoWPAN – Compressed / UDP or
ICMP

ICMP: 8-byte header (uncompressed)

HC2 bit is not set

L4 – UDP/ICMP Headers (8 bytes)

6LoWPAN – Compressed /
Compressed UDP

6LoWPAN introduces a range of well-known ports (61616 – 61631).
When ports fall in the well-known range, the upper 12 bits may be elided.
HC2 also allows elision of the UDP Length, as it can be derived from the IPv6
Payload Length field.

HC2 bit is set

IP: 3 bytes
UDP: 4 bytes (compressed indicator, ports, checksum)

HC2 (HC_UDP)

6LoWPAN IPv6/UDP Compression
Examples

(link local -> link local)

(link local -> local multicast)

(link global -> link global)

6LoWPAN – Compressed / TCP

TCP Header

LOWPAN_IPHC, NHC [RFC 6282]
n Common case assumption (IPv6 header)

q Version is 6
q Traffic Class and Flow Label are both zero
q Payload Length can be inferred from lower layers
q Hop Limit will be set to a well-known value
q Source addresses is formed using the link-local

prefix or a small set of routable prefixes
q Addresses assigned to 6LoWPAN interfaces are

formed with an IID derived directly from either the
64-bit extended or the 16-bit short IEEE 802.15.4
addresses.

6LoWPAN Improved IPv6 Header
Compression [RFC 6282]

n IPHC
q TF: Traffic Class and Flow Label to be individually compressed

n 2-bit Explicit Congestion Notification (ECN) and 6-bit Differentiated Services Code Point
(DSCP)

n 00: ECN + DSCP + 4-bit Pad + Flow Label (4 bytes)
n 01: ECN + 2-bit Pad + Flow Label (3 bytes), DSCP is elided.
n 10: ECN + DSCP (1 byte), Flow Label is elided.
n 11: Traffic Class and Flow Label are elided.

q NH: Next Header
n 0: Full 8 bits for Next Header are carried in-line.
n 1: The Next Header field is compressed and the next header is encoded using

LOWPAN_NHC

6LoWPAN Improved IPv6 Header
Compression [RFC 6282]

n IPHC
q HLIM: Hop Limit compression when common values

n 00: The Hop Limit field is carried in-line.
n 01: The Hop Limit field is compressed and the hop limit is 1.
n 10: The Hop Limit field is compressed and the hop limit is 64.
n 11: The Hop Limit field is compressed and the hop limit is 255.

q Context Identifier(CID): Makes use of shared-context to elide the prefix
from IPv6 addresses (two additional 4-bit fields)
n 0: No additional 8-bit Context Identifier Extension is used (either Source Address

Compression (SAC) or Destination Address Compression (DAC)).
n 1: An additional 8-bit Context Identifier Extension field immediately follows the

Destination Address Mode (DAM) field.

6LoWPAN Improved IPv6 Header
Compression [RFC 6282]

n IPHC
q Source Address Compression (SAC) indicates whether stateless

compression is used
n 0: Source address compression uses stateless compression.
n 1: Source address compression uses stateful, context-based compression.

q Source Address Mode (SAM) indicates whether the full Source
Address is carried inline, upper 16 or 64-bits are elided, or the full
Source Address is elided.
n If SAC=0:

q 00: 128 bits
q 01: 64 bits (network prefix elided, use link-local prefix)
q 10: 16 bits (first 112 bits elided); 0000:00ff:fe00:XXXX
q 11: 0 bits.

Zigbee short address

6LoWPAN Improved IPv6 Header
Compression [RFC 6282]

n IPHC
q Source Address Mode (SAM)

n If SAC=1:
q 00: The UNSPECIFIED address, ::
q 01: 64 bits. (other address bits are derived using context information)
q 10: 16 bits. (using context information + 0000:00ff:fe00:XXXX)
q 11: 0 bits. The address is fully elided and is derived using context information and the

encapsulating header (e.g., 802.15.4 or IPv6 source address)

q M: Supports multicast addresses most often used for IPv6 ND and
SLAAC (StateLess Address AutoConfiguration).
n 0: Destination address is not a multicast address.
n 1: Destination address is a multicast address.

6LoWPAN Improved IPv6 Header
Compression [RFC 6282]

n IPHC
q M:

n If M=1 and DAC=0, DAM:
q 00: 128 bits. The full address is carried in-line.
q 01: 48 bits. The address takes the form ffFS::00GGGGGG:GGGG. (F: Flag, S: Scope)
q 10: 32 bits. The address takes the form ffFS::00GG:GGGG. (G: Group id)
q 11: 8 bits. The address takes the form ff02::00GG.

n If M=1 and DAC=1, DAM:
q 00: 48 bits. This format is designed to match Unicast-Prefix-based IPv6 Multicast Addresses as

defined in [RFC3306] and [RFC3956]. The multicast address takes the form
ffXX:XXLL:PPPP:PPPP:PPPP:PPPP:XXXX:XXXX. (Prefix Length and Network Prefix can be taken
from a context)

q 01, 10, 11: reserved

Next Header Compression (NHC)

n NH=1 in IPHC indicates the use of LOWPAN_NHC

EID: IPv6 Extension Header ID:
0: IPv6 Hop-by-Hop Options Header [RFC2460]
1: IPv6 Routing Header [RFC2460]
2: IPv6 Fragment Header [RFC2460]
3: IPv6 Destination Options Header [RFC2460]
4: IPv6 Mobility Header [RFC6275]
5: Reserved
6: Reserved
7: IPv6 Header (NH must be 0; MUST be encoded using LOWPAN_IPHC)

NH: Next Header:
0: Full 8 bits for Next Header are carried in-line.
1: Next Header is elided, next header is encoded using LOWPAN_NHC

LOWPAN_NHC Format

IPv6 Extension Header Encoding

UDP NHC Format

n C: Checksum:
q 0: All 16 bits of Checksum are carried in-line.
q 1: All 16 bits of Checksum are elided. The Checksum is recovered by re-

computing it on the 6LoWPAN termination point.
n P: Ports:

q 00: All 16 bits for both Source Port and Destination Port are carried in-line.
q 01: All 16 bits for Source Port are carried in-line. First 8 bits of Destination Port is

0xf0 and elided. The remaining 8 bits of Destination Port are carried in-line.
q 10: First 8 bits of Source Port are 0xf0 and elided. The remaining 8 bits of

Source Port are carried in-line. All 16 bits for Destination Port are carried in-line.
q 11: First 12 bits of both Source Port and Destination Port are 0xf0b and elided.

The remaining 4 bits for each are carried in-line.

Compressing UDP Checksum

n UDP checksum is mandatory with IPv6
n In RFC 6282, an endpoint MAY elide the UDP

Checksum if it is authorized by the upper layer.
q Tunneling: tunneled Protocol Data Unit (PDU) possesses its own

addressing, security and integrity check
q Message Integrity Check: e.g., IPsec Authentication Header

n A decompressor that expands a 6LoWPAN packet with
the C bit set MUST compute the UDP Checksum on
behalf of the source node and place that value in the
restored UDP header as specified in the incumbent
standards [RFC0768], [RFC2460].

Improved UDP/IPv6 Header
Compression Examples

NHC header defines a new variable length Next Header
identifier, allowing for future definition of arbitrary next header
compression encodings.

Traffic Class, Flow Label, Payload Length, Next Header, Hop Limit, and
link-local prefixes for the IPv6 Source and Destination addresses are all elided.

Fragmentation
q Datagram Size(11): total size of the unfragmented payload
q Datagram Tag(16): ID of the fragmented packet
q Datagram Offset(8): in units of 8-byte chunks

The header type is only two bits.
The third bit is used to compress the datagram offset on the first fragment as it
is always zero.
The fragment header is 4 bytes for the first fragment and 5 bytes for
all subsequent fragments.

Mesh Addressing Header

q Hop Limit: 4 bits
q Source Address, and Destination Address: IEEE

802.15.4 link addresses and may carry either a
short or extended address.
n S/D: short or full address of source/destination address

Conclusion

n 6LoWPAN turns IEEE 802.15.4 into the next IP-
enabled link

n Provides open-systems based interoperability
among low-power devices over IEEE 802.15.4

n Provides interoperability between low-power
devices and existing IP devices, using standard
routing techniques

n Paves the way for further standardization of
communication functions among low-power
IEEE 802.15.4 devices

RPL: The IP routing protocol
designed for low
power and lossy networks
[RFC 6550]

黃仁竑教授

國立中正大學資工系

What is RPL?

n The IETF Routing Over Low-power and Lossy
networks (ROLL) Working Group was formed in
2008
q to create an IP level routing protocol adapted to the

requirements of mesh networking for IoT/M2M
n The first version of RPL (Routing Protocol for

Low-power and lossy networks) was finalized in
April 2011

n Current standard: RFC 6550 (March 2012)
q based on distance vector algorithms

65

Working Items of ROLL WG
n Protocol work

q http://datatracker.ietf.org/doc/draft-ietf-roll-rpl/
q RPL is designed to support different LLN application requirements

n RFC 5548 - Routing requirements for Urban LLNs
n RFC 5673 - Routing requirements for Industrial LLNs
n RFC 5826 - Routing requirements for Home Automation LLNs
n RFC 5867 - Routing requirements for Building Automation LLNs

n Routing metrics
q http://tools.ietf.org/id/draft-ietf-roll-routing-metrics/
q RFC 6551: Routing Metrics Used for Path Calculation in Low-Power and Lossy

Networks (2012/3)
n Security Framework

q http://tools.ietf.org/id/draft-ietf-roll-security-framework/
n The Trickle Algorithm (RFC 6206): adjustable transmission window

scheme
n Terminology

q http://tools.ietf.org/id/draft-ietf-roll-terminology/
n Applicability statement

q http://tools.ietf.org/id/draft-ietf-roll-applicability-ami/

66

http://datatracker.ietf.org/doc/draft-ietf-roll-rpl/
http://tools.ietf.org/id/draft-ietf-roll-routing-metrics/
http://tools.ietf.org/id/draft-ietf-roll-security-framework/
http://tools.ietf.org/id/draft-ietf-roll-terminology/
http://tools.ietf.org/id/draft-ietf-roll-applicability-ami/

Functionality of RPL

n RPL specifies a routing protocol specially
adapted for the needs of IPv6 communication
over “low-power and lossy networks” (LLNs),
supporting
q peer to peer traffic (point to point) (P2P)
q point to multipoint (P2MP) communication: from a

central server to multiple nodes on the LLN
q multipoint to point (MP2P) communication

n The base RPL specification is optimized only for
MP2P traffic or P2MP, and P2P is optimized
only through use of additional mechanisms.

67

Functionality of RPL

n RPL expects an external mechanism to
access and transport some control
information, referred to as the "RPL Packet
Information", in data packets. (ICMP)

n RPL provides a mechanism to disseminate
information over the dynamically formed
network topology.
q To reduce the number of messages sent on the

network, a trickle algorithm may limit the number
of periodic messages that are sent. [RFC6206]

Functionality of RPL

n In some applications, RPL assembles topologies
of routers that own independent prefixes.

n RPL also introduces the capability to bind a
subnet together with a common prefix and to
route within that subnet.

n RPL may disseminate IPv6 Neighbor Discovery
(ND) information such as the [RFC4861] Prefix
Information Option (PIO) and the [RFC4191]
Route Information Option (RIO).

Terminology

n DAG: Directed Acyclic Graph
n DAG root: A DAG root is a node within the

DAG that has no outgoing edge.
n Destination-Oriented DAG (DODAG): A DAG

rooted at a single destination
n DODAG root: A DODAG root is the DAG root

of a DODAG; it may act as a border router for
the DODAG.

DAG and DODAG

Terminology

n Virtual DODAG root: A Virtual DODAG root is
the result of two or more RPL routers, for
instance, 6LoWPAN Border Routers (6LBRs),
coordinating to synchronize DODAG state
and act in concert as if they are a single
DODAG root (with multiple interfaces), with
respect to the LLN.

Terminology

n Up: Up refers to the direction from leaf
nodes towards DODAG roots, following
DODAG edges.

n Down: Down refers to the direction from
DODAG roots towards leaf nodes, in the
reverse direction of DODAG edges.

Terminology
n Rank: A node’s Rank defines the node’s individual

position relative to other nodes with respect to a
DODAG root. Rank strictly increases in the Down
direction and strictly decreases in the Up direction.
The exact way Rank is computed depends on the
DAG’s Objective Function (OF).

Terminology

n Objective Function (OF): An OF defines how
routing metrics, optimization objectives, and
related functions are used to compute Rank.
q Currently, two objective functions are defined

n OF0: based on hop counts (no routing metrics)
n Minimum rank with hysteresis objective function

(MRHOF)
q The rank computation is based on metrics (e.g. link quality)

contained in DIO messages.
q MRHOF works only for additive metrics

Objective Function (Contiki OS)

n OF0
q Cooja uses a rank with a minimum of 256 units

(min_hoprankinc) that allows a maximum of 255 hops
n Minimum rank with hysteresis objective function

(MRHOF)
q Cooja uses a rank with a minimum unit of 128. The

ETX metric starts with a unit of 256 with a fixed-point
divisor of 128. (ETX: expected number of TX)

ETX =
1

D!×D"

D! indicates the probability of packets being
received by the neighboring node.
D" is the probability that the acknowledgment
is received successfully.

Terminology

n Routing Metrics and constraints
q LLN requires a sophisticated routing metric strategy

driven by type of data traffic.
q A metric is a scalar quantity used as input for best

path selection.
q A constraint is used to prune links or nodes that do not

meet the set of constraints.
q Metrics and constraints can be node or link based.

n Examples of node level metrics are node state attribute, node
energy state etc., while link level metrics can be latency,
reliability, etc.

Terminology

n Objective Code Point (OCP): An OCP is an
identifier that indicates which Objective
Function the DODAG uses.

n RPLInstanceID: A RPLInstanceID is a unique
identifier within a network. DODAGs with the
same RPLInstanceID share the same
Objective Function. multi-topology routing (MTR)

Terminology
n RPL Instance: A RPL Instance is a set of one or

more DODAGs that share a RPLInstanceID.
n DODAGID: identifier of a DODAG root.
n DODAG Version: a specific iteration ("Version")

of a DODAG with a given DODAGID
n DODAGVersionNumber: a sequential counter

that is incremented by the root to form a new
Version of a DODAG. A DODAG Version is
identified uniquely by the (RPLInstanceID,
DODAGID, DODAGVersionNumber) tuple

Terminology
n Grounded: A DODAG is grounded when the

DODAG root can satisfy the Goal. (DAG's root is
a border router)

n Floating: A DODAG is floating if it is not
grounded. (a subDAG's root may not be a border
router)

n DODAG parent: one of the immediate successors
of the node on a path towards the DODAG root.

n Sub-DODAG: The sub-DODAG of a node is the
set of other nodes whose paths to the DODAG
root pass through that node.

Terminology

n DIO: DODAG Information Object
n DAO: Destination Advertisement Object
n DIS: DODAG Information Solicitation
n CC: Consistency Check

RPLinstanceID

n Multiple concurrent instances of RPL may
operate in a given network, each of them is
characterized by a unique RPLinstanceID.
q Below, we describe the behavior of an individual

RPL instance.
q A RPL instance defines Optimization Objective

when forming paths towards roots based on one
or more metrics
n Metrics may include both Link properties (Reliability,

Latency) and Node properties (Powered on not)

82

Topology

n RPL organizes a topology as a Directed
Acyclic Graph (DAG) that is partitioned into
one or more Destination Oriented DAGs
(DODAGs), one DODAG per sink.

n A RPLInstanceID identifies a set of one or
more Destination Oriented DAGs (DODAGs).

n The set of DODAGs identified by a
RPLInstanceID is called a RPL Instance. All
DODAGs in the same RPL Instance use the
same OF.

DODAG Construction (1st view)

n The root starts advertising the information about the
graph using the DIO message.

n The neighboring nodes of the root will receive and
process DIO message potentially from multiple nodes
and makes a decision based on certain rules
(according to the objective function, DAG
characteristics, advertised path cost and potentially local
policy) whether to join the graph or not.

n Once the node has joined a graph it has a route toward
the graph (DODAG) root.

n The graph root is termed as the ‘parent’ of the node.

DODAG Construction (1st view)
n The node computes the ‘rank’ of itself within the graph,

which indicates the “coordinates” of the node in the
graph hierarchy.

n The neighboring peers will repeat this process and do
parent selection, route addition and graph information
advertisement using DIO messages.
q If configured to act as a router, it starts advertising the graph

information with the new information to its neighboring peers.
q If the node is a “leaf node”, it simply joins the graph and does not

send any DIO message.
n This rippling effect builds the graph edges out from the

root to the leaf nodes where the process terminates.

DODAG Construction (1st view)

n In this graph, each node has a routing entry towards its
parent (or multiple parents depending on the objective
function) in a hop-by-hop fashion and the leaf nodes can
send a data packet all the way to root of the graph by
just forwarding the packet to its immediate parent.

n This model represents a MP2P (Multipoint-to-point)
forwarding model where each node of the graph has
reach-ability toward the graph root. This is also referred
to as UPWARD routing.

DODAG Construction (1st view)

n Each node in the graph has a ‘rank’ that is
relative and represents an increasing coordinate
of the relative position of the node with respect
to the root in graph topology.

n The notion of “rank” is used by RPL for various
purposes including loop avoidance. The MP2P
flow of traffic is called the ‘up’ direction in the
DODAG.

DODAG Construction (2nd view)
n Some nodes are configured to be DODAG roots, with associated

DODAG configurations.
n Nodes advertise their presence, affiliation with a DODAG, routing

cost, and related metrics by sending link-local multicast DIO
messages to all-RPL-nodes.

n Nodes listen for DIOs and use their information to join a new
DODAG (thus, selecting DODAG parents), or to maintain an existing
DODAG, according to the specified Objective Function and Rank of
their neighbors.

n Nodes provision routing table entries, for the destinations specified
by the DIO message, via their DODAG parents in the DODAG
Version. Nodes that decide to join a DODAG can provision one or
more DODAG parents as the next hop for the default route and a
number of other external routes for the associated instance.
q chooses parents that minimize path cost to the DODAG root

DODAG Example
n Each node has a set of parent nodes
n A node has no knowledge about children à ONLY

upward routes

Routing Loop Detection

n If a node receives a packet flagged as
moving in the Upward direction, and if that
packet records that the transmitter is of a
lower (lesser) Rank than the receiving node,
then the receiving node is able to conclude
that the packet has not progressed in the
Upward direction and that the DODAG is
inconsistent.

Downward Routes

n RPL uses Destination Advertisement Object
(DAO) messages to establish Downward
routes. (for P2MP or P2P) Two modes:
q Storing (fully stateful)

n packet may be directed Down towards the
destination by a common ancestor of the source
and the destination

q Non-Storing (fully source routed)
n packet will travel all the way to a DODAG root

before traveling Down.(因為只有root存routing info.)

A mixed mode of operation is not allowed.

Downward Routing

n Each RPL instance supporting download traffic selects one
of the two models
q “storing” model: nodes maintain routing tables

n DAO message, including the prefixes and addresses reachable by the
sending node, are sent to the parents.

n Parents store the preferred downward routes and propagate aggregated
DAOs upward.

q “nonstoring” model: nodes use default routing upward and source
routing downward
n All downward traffic includes a source routing header specifying each

hop along the path.
n Intermediary routers don’t store any routing information .
n The DAG root calculate an optional hop by hop source routing path for

each advertised destination. (IPv6 routing extensions)
n Messages will be much longer.
n P2P traffic is always routed to the DAG root.

92

Storing Mode

n DAO messages are used to advertise prefix
reachability towards the leaf nodes in support of the
‘down’ traffic.

n DAO carries prefix information, valid lifetime and
other information about the distance of the prefix.

n As each node joins the graph it will send DAO message
to its parent set. Alternately, a node or root can poll the
sub-DAG for DAO message through an indication in
the DIO message.

n As each node receives the DAO message, it
processes the prefix information and adds a routing
entry in the routing table.

Storing Mode

n It optionally aggregates the prefix information received
from various nodes in the sub-DAG and sends a DAO
message to its parent set.

n This process continues until the prefix information
reaches the root and a complete path to the prefix is
setup.

Non-storing Mode

n When a node A sends a packet to a node B within
the RPL domain, the packet first follows the graph
up to the root where the routing information is
stored.

n At this point, the graph root inspects the destination,
consults its routing table that contains the path to
the destination (obtained from DAO messages
received).

n The root “source -routes” the packet to its
destination using a specific routing header for IPv6
(called RH4).

Two modes of Operation

RPL Control Messages
n RPL Control message are ICMPv6 messages

q DAG Information Object (DIO) - carries
information that allows a node to discover an RPL
Instance, learn its configuration parameters and
select DODAG parents

q DAG Information Solicitation (DIS) - solicit a
DODAG Information Object from a RPL node

q Destination Advertisement Object (DAO) - used to
propagate destination information upwards along
the DODAG.

q DAO-ACK: Destination Advertisement Object
Acknowledgement

+ The 4 secured versions

Control Message Exchange

n Each DODAG, uniquely identified by
RPLInstanceID and DODAGID, is incrementally
built from the root to the leaf nodes.
q RPL nodes send DIOs periodically via link-local

multicasts.
q Joining nodes may request DIOs from their neighbors

by multicasting DIS (DODAG Information Solicitation) .
q DTSN (Destination Advertisement Trigger Sequence

Number) is a 8-bit unsigned integer set by the issuer
of the message. In the storing mode, increasing DTSN
is to request updated DAOs from child nodes.

98

Routing Metrics in LLNs

99

Reference: IoT Workshop RPL Tutorial, Cisco SystemsSpecified in draft-ietf-roll-routing-metrics

Building a DAG-Upward Routing

100

Reference: IoT Workshop RPL Tutorial, Cisco Systems

Multiple Instances of RPL

ICMPv6 RPL Control Message

102
Reference: Figure 12.7: Structure of ICMPv6 RPL control message

DIS
DIO
DAO
DAO-ACK

Link-local scope: source is link-local unicast and destination=link-local
unicast or all-RPL-nodes(FF02::1) (for all RPL messages except DAO/
DAO-ACK in non storing mode, DIO replies to DIS)

DODAG Information Object (DIO)

All nodes except “leaves” generate DIO periodically (controlled by Trickle).
A node uses the DIO messages received from its neighbor to determine their rank.
A node will select a set of possible parents and a preferred parent.

Trickle Timer

n RPL uses an adaptive timer mechanism
called the “trickle timer”
q The algorithm treats building of graphs as a

consistency problem and makes use of trickle
timers to decide when to multicast DIO messages.

q The interval of the trickle timer increases as the
network stabilizes

q Inconsistency events: loop, join, move, etc
n As inconsistencies are detected, the nodes reset the

trickle timer and send DIOs more often.

Trickle Algorithm

n

Trickle Algorithm

n Node operation parameters
q I: the current interval size
q t: a time within the current interval; time to send a

control packet
q c: a consistent counter

Trickle Algorithm

1. Sets I to a value in the range of [Imin, Imax]
2. Starts an interval; resets c to 0; sets t to a

random number from the range [I/2, I)
3. If receives a consistent transmission, c++
4. At time t, transmits a control packet iff c<k
5. When I expires, I=Max(2xI, Imax)
6. If receives an inconsistent transmission and

I>Imin, resets I=Imin, starts a new interval;
resets c to 0; t=random[I/2, I)

DODAG Information Object (DIO)

108

Reference: Figure 12.8: RPL DIO base object (followed by options)

• It is used to build the
DODAG.

• It carries general
DODAG configuration
parameters and
information that allows
listening RPL routers to
select a set of DODAG
parents.

Next Slide

Options of RPL DIO

n Option types
q 0x02: metric container option

n Estimate the cost to reach destinations
q 0x03: routing information option

n Contains the same fields as the IPv6 neighbor discovery route
information option

q 0x04: DODAG information option
n Constrain the rank a node can advertise when reattaching to a DODAG,

or
n The default lifetime of all RPL routes

q 0x08: prefix information option
n Contains the same fields as the IPv6 neighbor discovery prefix option

109

Type Length Data …Option:

Routing Information Option (Type=3)

n RPL nodes send DIOs periodically via link-
local multicasts

n Joining nodes may request DIOs from their
neighbors by multicasting DIS

110

Reference: Figure 12.9: RPL Route Information option (Type=3)

DODAG Information Option (Type=4)

111

Reference: Figure 12.8: RPL DIO base object (followed by options)

RPL DIS Message

Downward Routes and Destination
Advertisement
n Nodes inform parents of their presence and

reachability to descendants by sending a
DAO message

n Node capable of maintaining routing state
àaggregate routes

n Node incapable of maintaining routing state
à attach a next-hop address to the reverse
route stack contained within the DAO
message

Destination Advertisement - Example

Source: Siarhei Kuryla, Networks and Distributed Systems seminar, March 2010

DAO Message

Conclusion

n Optimized for many-to-one and one-to-many
traffic patterns

n Routing state is minimized: stateless nodes have
to store only instance(s) configuration
parameters and a list of parent nodes

n Takes into account both link and node properties
when choosing paths

n Link failures does not trigger global network re-
optimization

CoAP: Constrained
Application Protocol

黃仁竑教授

國立中正大學資工系

CoAP

n The Constrained Application Protocol (CoAP)
is defined by IETF CoRE WG for the
manipulation of resources on a device that is
on the constrained IP networks.

118

What CoAP is (and is not)
n CoAP is

q A RESTful protocol
q Both synchronous and asynchronous
q For constrained devices and networks
q Specialized for M2M applications
q Easy to proxy to/from HTTP

n CoAP is not
q A replacement for HTTP
q General HTTP compression
q Separate from the web

CoRE Documents

120

Number Title Date Status
RFC 7252

RFC 7959

The Constrained Application Protocol
(CoAP)

June 2014
August
2016

Proposed
Standard

RFC 7390 Group Communication for the
Constrained Application Protocol (CoAP)

October
2014

Experime
ntal

RFC 7641 Observing Resources in the
Constrained Application Protocol (CoAP)

September
2015

Proposed
Standard

RFC 7650 A Constrained Application Protocol
(CoAP) Usage for REsource LOcation
And Discovery (RELOAD)

September
2015

Proposed
Standard

RFC 8323 CoAP (Constrained Application Protocol)
over TCP, TLS, and WebSockets

February
2018

Proposed
Standard

Constrained IP Networks
n A constrained IP network has limited packet sizes, may exhibit a

high degree of packet loss, and may have a substantial number of
devices that may be powered off at any point in time but periodically
"wake up" for brief periods of time.

n These networks and the nodes within them are characterized by
severe limits on throughput, available power, and particularly on the
complexity that can be supported with limited code size and limited
RAM per node.

n Low-Power Wireless Personal Area Networks (LoWPANs) are an
example of this type of network. Constrained networks can occur as
part of home and building automation, energy management, and the
Internet of Things.

121

Source: IETF CoRE WG

Devices on Constrained Networks

n The general architecture consists of nodes on the
constrained network, called Devices, that are
responsible for one or more Resources that may
represent sensors, actuators, combinations of values or
other information.

n Devices send messages to change and query resources
on other Devices.

n Devices can send notifications about changed resource
values to Devices that have subscribed to receive
notification about changes.

n A Device can also publish or be queried about its
resources.

122

Source: IETF IPv6 WG

Application Scope of CoAP

n CoAP targets the type of operating environments
defined in the ROLL and 6LOWPAN working
groups which have additional constraints
compared to normal IP networks, but the CoAP
protocol will also operate over traditional IP
networks.

n This includes applications to monitor simple
sensors (e.g. temperature sensors, light
switches, and power meters), to control
actuators (e.g. light switches, heating controllers,
and door locks), and to manage devices.

123Source: IETF IPv6 WG

CoAP vs. HTTP

n Like HTTP, the CoAP is a way of structuring
REST communications but optimized for
M2M applications.

n TCP and HTTP are considered too heavy for
6LowPAN devices such as sensors. CoAP is
thus based on UDP and a compressed
simplified message exchange.
q NB: RFC 8323 extends CoAP over TCP/TLS

124

CoAP RESTful Applications

125

Source: IETF IPv6 WG

CoAP Server

https://www.slideshare.net/michaeljohnkoster/object-models-for-interoperability

CoAP Message Format

127

Ver - Version (1) 2-bit
T - Transaction Type 2-bit

• CON (0) – Confirmable
• NON (1) – Non-Confirmable
• ACK (2) – Acknowledgement
• RST (3) – Reset

Token Length (TKL): 4-bit
Code – 3-bit class, 5-bit detail ("c.dd“)
Class: request (0), success response (2), client error response (4), server
error response (5) (see next page for details)
Message ID - Identifier for matching responses
Token - used to correlate requests and responses.

CoAP Code and Message ID
n Code: compressed from HTTP text

representation (3 numbers) into one byte
q HTTP requests =>first 3 bits 000; next five bits 0~32 (1:

GET; 2: POST; 3:PUT; 4:DELETE etc.)
q HTTP responses=>first 3 bits 001-101 (1~5)

representing the first number of 2xx: success, 4xx:
client error, 5xx: server error; xx represented by next
five bits 00001~01111 (1~15 used only; e.g. with
HTTP response 201 is represented as 010-00001;
HTTP response 400 is represented as 100-00000 etc.)

n Message ID: used in the acknowledgment
process to tie a request with a response.

128

CoAP Options

129

Option Delta - Difference between this option type and the previous
Length - Length of the option value (0-270)
Value - The value of Length bytes immediately follows Length

Options
n CoAP defines a single set of options that are

used in both requests and responses:
q Content-Format
q ETag
q Location-Path
q Location-Query
q Max-Age
q Proxy-Uri
q Proxy-Scheme
q Uri-Host
q Uri-Path
q Uri-Port
q Uri-Query
q Accept
q If-Match
q If-None-Match
q Size1

130

Examples of Option types

131

4 (Etag) entity tag: proxy can assign entity tags to responses it sends to a client
14 (Max-Age) gives the maximum duration in seconds for which the answer may

be cached.
19 (Token) is used to match a response with a request.
6 (Observe) is used to receive regularly updated values from the server.
RFC 7641: Observing Resources in CoAP.
23, 27 (Block2, Block1) is used to transfer blocks of responses (Work in Progress)

C=Critical
U=Unsafe
N=NoCacheKey
R=Repeatable

Observe Option

CoAP Methods

n CoAP makes use of GET, PUT, POST, and
DELETE methods in a similar manner to
HTTP.

n New methods can be added, and do not
necessarily have to use requests and
responses in pairs.
q For example: OBSERVE (embedded in GET

method)

CoAP URI

n coap-URI = "coap:" "//" host [":" port] path-
abempty ["?" query]
q coap://example.com:5683/˜sensors/temp.xml
q coap://EXAMPLE.com/%7Esensors/temp.xml

n coaps-URI = "coaps:" "//" host [":" port] path-
abempty ["?" query]

Messaging Model
n Reliable Message Transmission:

q Reliability is provided by marking a message as
Confirmable (CON).

q A Confirmable message is retransmitted using a
default timeout and exponential back-off between
retransmissions, until the recipient sends an
Acknowledgement message.

135

Messaging Model
n Unreliable Message Transmission:

q A message that does not require reliable transmission
can be sent as a Non-confirmable message (NON).

q These are not acknowledged.

136

Example 1 of CoAP Requests

137

Synchronous Message Exchange
1. A CONfirmable message followed

by ACKowledgement piggybacked
with the response in the same
Message ID (MID).

2. When ACKnowledgment was
lost, Client’s timer expires and
it resends the message.

3. Exponential back-off between
retransmissions.

Source: M2M Communications: A Systems Approach, Wiley, 2012

Example 2a of CoAP Requests

138

Asynchronous Message Exchange
1. A CONfirmable message with TOKEN

option can be acknowledged immediately
with an Empty Acknowledgement.

2. When the response is available,
it can be returned in a new CON
message with the same TOKEN
ID.

Message Details

Example 2b of CoAP Requests

140

Asynchronous Message Exchange
1. A Non-confirmable message with TOKEN

then the response is sent using a new
Non-confirmable message, although the
server may instead send a Confirmable

message.

OBSERVE Design Pattern

141

Example 3a of CoAP Requests (OBSERVE)

142

Periodic response from a server
1. A CONfirmable message from the client

contains OBSERVE option asking periodic
responses from the server.

2. The server send NON responses with the
same TOKEN ID.

3. OBSERVE is the response will be increased to
indicate the order of the response.

4. The client will ignore OBSERVE=20 since
it arrives later than OBSERVE=30.

5. Either client or server can terminate the
process.

Source: M2M Communications: A Systems Approach, Wiley, 2012

Example 3b of CoAP Requests (OBSERVE)

143

The server may send a
notification in a
confirmable CoAP
message to request an
acknowledgement from
the client.

A notification can be
confirmable or non-
confirmable.

Example 4 of CoAP Requests

144

Block Transfer from Server to Client
1. A CONfirmable message from Client to get information.
2. Server indicates it has block of information to send.
3. Client then asks for more blocks of information.

Source: IETF IPv6 WG

Proxying and Caching

145

Source: IETF IPv6 WG

Within 30s

CoAP Caching Model

Cacheability determined by response code
• Freshness model

– Max-Age option indicates cache lifetime
• Validation model

– Validity checked using the Etag Option
(http://en.wikipedia.org/wiki/HTTP_ETag)

Cacheability of CoAP responses depends on
the Response Code.

146

http://en.wikipedia.org/wiki/HTTP_ETag

CoAP Resource Discovery

n Resource Discovery with CoRE Link Format
q Discovering the links hosted by CoAP servers
q GET /.well-known/core
q Returns a link-header style format based on

RFC5988 including URL, relation, type, interface,
content-type etc.

q See RFC 6690: Constrained RESTful
Environments (CoRE) Link Format

147

!"#$%&&''()*)+)+,-&"!&!"./0.12#3$4#)35641

RFC 6690 Link Format
Link = link-value-list
link-value-list = [link-value *["," link-value]]
link-value = "<" URI-Reference ">" *(";" link-param)
link-param = (("rel" "=" relation-types)

/ ("anchor" "=" DQUOTE URI-Reference DQUOTE)
/ ("rev" "=" relation-types)
/ ("hreflang" "=" Language-Tag)
/ ("media" "=" (MediaDesc

/ (DQUOTE MediaDesc DQUOTE)))
/ ("title" "=" quoted-string)
/ ("title*" "=" ext-value)
/ ("type" "=" (media-type / quoted-mt))
/ ("rt" "=" relation-types)
/ ("if" "=" relation-types)
/ ("sz" "=" cardinal)
/ (link-extension))

Example of Resource Discovery

149

</light>;rt="Illuminance";ct=0,
</s/maastr.xml>;title="Maastricht weather";ct=1,
</s/maastr/temp>;title="Temperature in Maastrich";ct=1,
</s/oulu.xml>;title="Oulu weather";ct=1,
</s/oulu/temp>;title="Temperature in Oulu";ct=1,
</s/temp>;rt="Temperature";ct=0 Source: IETF IPv6 WG

Resource Type ‘rt’ Attribute Interface Description ‘if’ Attribute

Example of Resource Discovery

150

REQ: GET /.well-known/core
RES: 2.05 Content
</sensors/temp>;if="sensor",
</sensors/light>;if="sensor“

REQ: GET /.well-known/core
RES: 2.05 Content
</sensors>;ct=40

REQ: GET /sensors
RES: 2.05 Content
</sensors/temp>;rt="temperature-c";if="sensor",
</sensors/light>;rt="light-lux";if="sensor"

Source: IETF IPv6 WG

Summary
n CoAP is applicable to any IP networks.
n Open source software available for these

protocols.
q http://coapy.sourceforge.net/index.html
q CoAPy: Constrained Application Protocol in Python

151

http://coapy.sourceforge.net/index.html

Q&A

152

MQTT

國立中正大學資工系黃仁竑教授

154

What is MQTT ?
} MQTT = MQ Telemetry Transport
} MQTT protocol is a lightweight publish/subscribe protocol flowing over

TCP/IP for remote sensors and control devices through low bandwidth,
unreliable or intermittent communications.

} MQTT was developed by Andy Stanford-Clark of IBM, and Arlen Nipper of
Cirrus Link Solutions more than a decade ago.

■ ISO/IEC 20922:2016 Message Queuing Telemetry Transport (MQTT) v3.1.1.
(Draft of v5.0 published in July, 2017)

■ Client libraries are available in almost all popular languages now.

■ https://eclipse.org/paho/

■ The current MQTT specification is available at:

■ http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

■ http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Candidate OASIS Standard 01, 31 October 2018

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Projects that Implement MQTT
} Amazon Web Services announced Amazon IoT based on MQTT in 2015
} Microsoft Azure IoT Hub uses MQTT as its main protocol for telemetry

messages
} Node-RED supports MQTT nodes as of version 0.14
} Facebook has used aspects of MQTT in Facebook Messenger for online

chat
} The EVRYTHNG IoT platform uses MQTT as an M2M protocol for

millions of connected products.

Features of MQTT
} It supports publish/subscribe message pattern to provide one-to-many

message distribution and decoupling of applications
} A messaging transport that is agnostic to the content of the payload
} Three qualities of service for message delivery:

} "At most once" , where messages are delivered according to the best efforts of
the operating environment. Message loss can occur. This level could be used, for
example, with ambient sensor data where it does not matter if an individual
reading is lost as the next one will be published soon after.

} "At least once", where messages are assured to arrive but duplicates may occur.
} "Exactly once", where message are assured to arrive exactly once. This level

could be used, for example, with billing systems where duplicate or lost
messages could lead to incorrect charges being applied.

} A small transport overhead and protocol exchanges minimized to reduce
network traffic.

} A mechanism to notify interested parties when an abnormal disconnection
occurs. (Last Will and Testament)

Last Will and Testament
} The protocol provides a method for detecting when clients close their

connections improperly by using keep-alive packets.
} So when a client crashes or it’s network goes down, the broker can take action.

} Clients can send a Last Will and Testament (LWT) message to the broker at
any point. When the broker detects the client has gone offline (without
closing their connection), it will send out the saved LWT message on a
specified topic, thus letting other clients know that a node has gone offline
unexpectedly.

MQTT Pub/Sub Protocol
} MQ Telemetry Transport (MQTT) is a lightweight broker-based

publish/subscribe messaging protocol.
} MQTT is designed to be open, simple, lightweight and easy to implement.

} These characteristics make MQTT ideal for use in constrained environments, for
example in IoT.

} Where the network is expensive, has low bandwidth or is unreliable
} When run on an embedded device with limited processor or memory

resources;
} A small transport overhead (the fixed-length header is just 2 bytes), and

protocol exchanges minimized to reduce network traffic

Source: MQTT V3.1 Protocol Specification, IBM, http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

Suitable for Constrained Networks
} Protocol compressed into bit-wise headers and variable length fields.
} Smallest possible packet size is 2 bytes
} Asynchronous bidirectional “push” delivery of messages to applications (no

polling)
} Client to server and server to client
} Supports always-connected and sometimes-connected models
} Provides Session awareness
} Configurable keep alive providing granular session awareness
} “Last will and testament” enable applications to know when a client goes

offline abnormally
} Typically utilizes TCP based networks e.g. , Webscokets
} Tested on many networks

Publish Subscribe Messaging
} A Publish Subscribe messaging protocol allowing a message to be published

once and multiple consumers (applications / devices) to receive the message
providing decoupling between the producer and consumer(s)

} A producer sends (publishes) a message (publication) on a topic (subject)
} A consumer subscribes (makes a subscription) for messages on a topic (subject)
} A message server/broker matches publications to subscriptions

} If no matches the message is discarded
} If one or more matches the message is delivered to each matching

subscriber/consumer

Broker/Publish/Subscribe

https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot/

Publish Subscribe Messaging
} A topic forms the namespace

} Is hierarchical with each “sub topic” separated by a /
} <country>/<region>/<town>/<postcode>/<house>/alarmState

} A subscriber can subscribe to an absolute topic or can use wildcards:
} Single-level wildcards “+” can appear anywhere in the topic string

} sensors/+/uk/london/baker_street
} get data from all sensor types in London

} Multi-level wildcards “#” must appear at the end of the string
} sensors/temperature/uk/#
} Get temperature data from all locations in UK

Publish Subscribe Messaging
} A subscription can be durable or non durable

} Durable:
} Once a subscription is in place, a broker will forward matching messages to

the subscriber:
¨ Immediately if the subscriber is connected
¨ If the subscriber is not connected, messages are stored on the server/broker

until the next time the subscriber connects
} Non-durable: The subscription lifetime is the same as the time the subscriber is

connected to the server / broker
} A publication may be retained

} A publisher can mark a publication as retained
} The broker / server remembers the last known good message of a retained topic
} The broker / server gives the last known good message to new subscribers

} i.e. the new subscriber does not have to wait for a publisher to publish a
message in order to receive its first message

Publish/Subscribe

https://www.slideshare.net/michaeljohnkoster/mqtt-rest-bridge

MQTT Message Format
} Structure of an MQTT Control Packet

} The message header for each MQTT command message contains a fixed header.
} Some messages also require a variable header and a payload.

Fixed header, present in all MQTT Control Packets
Variable header, present in some MQTT Control Packets

Payload, present in some MQTT Control Packets

MQTT Message Format
} The format for fixed header:

— DUP: Duplicate delivery of a PUBLISH Control Packet
— QoS: Quality of Service
— RETAIN: RETAIN flag

—This flag is only used on PUBLISH messages. When a client sends a PUBLISH
to a server, if the Retain flag is set (1), the server should hold on to the message
after it has been delivered to the current subscribers.
—This allows new subscribers to instantly receive data with the retained, or
Last Known Good, value.

Control Packet types
} CONNECT: Client request to connect to Server
} CONNACK: Connect acknowledgment

} PUBLISH: Publish message
} PUBACK: Publish acknowledgment
} PUBREC: Publish received (assured delivery part 1)
} PUBREL: Publish release (assured delivery part 2)
} PUBCOMP: Publish complete (assured delivery part 3)

Control Packet types
} SUBSCRIBE: Client subscribe request
} SUBACK: Subscribe acknowledgment

} UNSUBSCRIBE: Unsubscribe request
} UNSUBACK: Unsubscribe acknowledgment

} PINGREQ: PING request
} PINGRESP: PING response

} DISCONNECT: Client is disconnecting

QoS
} QoS Level 0:

} No acknowledgment from the client and the reliability will be the same as that of
the underlying network layer, TCP/IP.

} QoS Level 1:
} This ensures that the message is delivered to the client at least once, but it could

be delivered more than once. It relies on the client sending an ACK packet when
it receives a packet.

} QoS Level 2:
} This ensures that a message is delivered once and only once. This method

requires an exchange of four packets, and will decrease performance of the
broker. This level is also often left out of MQTT implementations due to its
relative complexity.

QoS

https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot/

QoS 0

QoS 1

QoS 2

Variable Header
} CONNECT packet

} Client requests a connection to a Server
} Fixed header: packet type=1
} Variable header: Protocol Name, Protocol Level (4), Connect Flags, Keep Alive

} Connect Flags

} If the Will Flag is set to 1 this indicates that, if the Connect request is
accepted, a Will Message MUST be stored on the Server and associated
with the Network Connection. The Will Message MUST be published when
the Network Connection is subsequently closed.
} Client crashes without sending a DISCONNECT Packet first

Bit 7 6 5 4 3 2 1 0
User Name

Flag
Password

Flag
Will

Retain
Will QoS Will

Flag
Clean

Session
Reserved

Payload
} CONNECT packet

} Client Identifier
} Will Topic
} Will Message
} User Name
} User Password

How do you specify a LWT message for a client?

Security
} Authentication

} Username and password as part of CONNECT action

} Encryption
} SSL and plain text communication over TCP/IP

BrokerMQTT Client

authentication module

Queue
managerUsername/password

Username/password
Replied with
Yes/No

Broker Software
} Mosquitto - One of the earliest production ready brokers, Mosquitto is

written in C and offers high performance with a lot of configurability.
} Mosca - Written in Node.js, this can be embedded in a Node application or

run as a standalone executable. Easy configuration and extensibility, also
very performant.

} RSMB - IBM’s implementation of the MQTT protocol. This is one of the
less popular options but is a mature system, written in C.

} HiveMQ - HiveMQ is a relatively new player, and is oriented towards
enterprise environments.

© 2008 Cisco Systems, Inc. All rights reserved. Cisco ConfidentialPresentation_ID 179

Introduction to XMPP

Joe Hildebrand

What is XMPP?
} eXtensible Messaging and Presence Protocol
} Bi-directional streaming XML
} Core: IETF RFC 6120, 7590, 6121
} Extensions: XMPP Standards Foundation (XSF)

} Membership-based
} Elected technical council
} Unit of work: XMPP Extension Protocol (XEP)
} Process: Experimental, Proposed, Draft, Final

} Goals:
} Simple clients
} Federate everything

https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc7590
https://tools.ietf.org/html/rfc6121

Related RFCs

RFC Name Description

RFC 6120 XMPP Core XMPP core features
Updated by 7590 (TLS)

RFC 6121 XMPP IM XMPP Instant Messaging and
Presence

RFC 3922 XMPP CPIM Mapping XMPP to Common
Presence and Instant Messaging
(CPIM)

RFC 3923 XMPP E2E End-to-End Signing and Object
Encryption for XMPP

RFC 5122 XMPP URI Internationalized Resource Identifiers
(IRIs) and Uniform Resource
Identifiers (URIs) for XMPP

RFC 4854 XMPP URN Uniform Resource Name (URN)
Namespace for XMPP

182

What is XMPP ?
} The eXtensible Messaging and Presence Protocol (XMPP) is a TCP

communications protocol based on XML that enables near-real-time
exchange of structured data between two or more connected entities.

} Out-of-the-box features of XMPP include presence information and contact
list maintenance.

} Due in part to its open nature and XML foundation, XMPP has been
extended for use in publish-subscribe systems
} Perfect for IoT applications.

https://www.infoworld.com/article/2972143/internet-of-things/real-time-protocols-for-iot-apps.html

XMPP Architecture

Server1 Server2

Server3

Client

Client

Client

Client Client Client

Client

Client

Client

Server<->Server: Port 5269

Client<->Server: Port 5222

XMPP Architecture
} Addressing Scheme: node@domain/resource

} JID = Jabber ID
} Node: identity, e.g. user name
} Domain: DNS domain name
} Resource: device identifier
} node@domain identifies a person

} Client talks to “local” server
} Wherever the user account is hosted
} Tied to directory if desired
} Organizational policy enforced

} Servers talk to other servers
} DNS lookup on domain portion of address
} Dialback, MTLS for security
} One connection for many conversations

<geoloc xmlns='http://jabber.org/protocol/geoloc'
xml:lang='en'
id='14'>

<lat>38.9</lat>
<lon>-77.1</lon>
<locality>Arlington</locality>
<region>VA</region>

</geoloc>

XML Refresher
} Element
} Attribute
} Namespace
} Language
} Text

Attribute

Element

XMPP Streams
} Client connects TCP socket to server
} Client sends stream start tag:
<stream:stream xmlns='jabber:client'

xmlns:stream='http://etherx.jabber.org/streams'
to='example.com'
version='1.0'>

} Server sends stream start tag back:
<stream:stream xmlns='jabber:client'

xmlns:stream='http://etherx.jabber.org/streams'
from='example.com’
id='someid'
version='1.0'>

} Each child element of stream: a “stanza”

Stream features
} After stream start, server sends feature list:
<stream:features>
<starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
<mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'>
<mechanism>DIGEST-MD5</mechanism>

</mechanisms>
<compression xmlns='http://jabber.org/features/compress'>
<method>zlib</method>

</compression>
</stream:features>

} Client can negotiate any of these features

XML Stream Features

Security Stuff
} Start-TLS

} Prove the identity of the server
} Prove the identity of the user (optional)
} Encryption
} Data integrity

} SASL(Simple Authentication and Security Layer protocol) (RFC 4422)
} Authentication
} Optional encryption (rarely used)
} Pluggable (e.g. passwords, Kerberos, X.509, SAML, etc.)

http://tools.ietf.org/html/rfc4422

Stanzas
} All have to='JID' and from='JID' addresses

} To gives destination
} From added by local server

} Each stanza routed separately
} All contents of stanza passed along
} Extend with any XML from your namespace
} Different types for delivery semantics

<message/>: one direction, one recipient
<presence/>: one direction, publish to many
<iq/>: "info/query", request/response

See details
next page

Message
} Example:
<message xml:lang='en'

to='romeo@example.net'
from='juliet@example.com/balcony'
type='chat'>

<body>Wherefore art thou, Romeo?</body>
</message>

} Types: chat, groupchat, headline, error
} Body: plain text
} XHTML IM: XEP-0071

http://www.xmpp.org/extensions/xep-0071.html

Presence
} Example:
<presence>
<show>dnd</show>
<status>Meeting</status>
<priority>1</priority>

</presence>

} Show: chat, available, away, xa, dnd
} Status: Human-readable text
} Priority: Which resource "most available"?

express an entity's current network availability

IQ Request
} Example:
<iq type='get'

id='roster_1'>
<query xmlns='jabber:iq:roster'/>

</iq>

} Type: get, set, result, error
} ID: track the corresponding response
} Query/Namespace: what type of request?

a structured request-response mechanism

IQ Response (Roster)
} Example:
<iq type='result'

id='roster_1'>
<query xmlns='jabber:iq:roster'>
<item jid='romeo@example.net'

name='Romeo'
subscription='both'>

<group>Friends</group>
</item>

</query>
</iq>

} Type: response
} ID matches request
} Subscription state: none, to, from, both

Subscribing to Presence
} Send a subscription request:
<presence to='juliet@example.com'

type='subscribe'/>

} Approving a request:
<presence to='romeo@example.net'

type='subscribed'/>

} Every time you change a subscription, you get a
"roster push":
<iq type='set'>
<query xmlns='jabber:iq:roster'>
<item jid='romeo@example.net'

subscription='from'/>
</query>

</iq>

Extensibility Example: Message
} Use a new namespace
} Key: if you don't understand it, ignore it
} Example, CAP, XEP-0127:

<message to='weatherbot@jabber.org'
from='KSTO@NWS.NOAA.GOV'>

<alert xmlns='http://www.incident.com/cap/1.0'>
<identifier>KSTO1055887203</identifier>
<sent>2003-06-17T14:57:00-07:00</sent>
<info>

<category>Met</category>
<event>SEVERE THUNDERSTORM</event>

...
</info>

</alert>
</message>

Common Alerting Protocol
(CAP) Over XMPP

http://www.xmpp.org/extensions/xep-0127.html

Extensibility Example: Presence
} Keep presence stanzas small
} Example: Entity Capabilities, XEP-0115:
<presence from='bard@shakespeare.lit/globe'>
<c xmlns='http://jabber.org/protocol/caps'

hash='sha-1'
node='http://www.chatopus.com'
ver='zHyEOgxTrkpSdGcQKH8EFPLsriY='/>

</presence>

} Ver attribute is hash of all features of this client
} Hash -> Feature list is cached

It defines an XMPP protocol extension for broadcasting and dynamically discovering
client, device, or generic entity capabilities.

http://www.xmpp.org/extensions/xep-0115.html

XMPP Extensions
} Many already exist: http://www.xmpp.org/extensions/
} Add new ones

} Custom: use a namespace you control, make up protocol
} Standardized: write a XEP.

http://www.xmpp.org/extensions/

Federation: DNS
} Starts with: non-local domain in to address

} Look up this DNS SRV record: (service record)
_xmpp-server._tcp.domain

} Example: jabber.com:
10 0 5269 jabber.com.

} Priority: Which one to try first if multiple
} Weight: Within a priority, what percentage chance?
} Port: TCP port number
} Target: Machine to connect to

Federation: Security
} Old-style: dialback

} Connect back to domain claimed by initiator
} Check secret claimed by initiator
} "Someone said they were example.com; was that you?"

} New-style: Mutual TLS
} Initiator presents "client" certificate
} Responder presents "server" certificate
} Both certificates signed by trusted CA

} All stanzas must have from with correct domain

Bandwidth minimization
} TLS compression

} Not implemented in all SSL/TLS stacks
} Some want compression w/o encryption

} XEP-0138: Stream Compression
} Defines zlib mechanism (2-3x or more compression)
} Others can be added
} Concern: battery drain vs. radio transmission

} XEP-0198: Stanza Acknowledgements
} Quick reconnects
} Avoid re-synchronizing state on startup

} Partial rosters
} Privacy lists
} Others being pursued

http://www.xmpp.org/extensions/xep-0138.html
http://www.xmpp.org/extensions/xep-0198.html

Latency
} Most critical on startup

} Several handshakes and stream restarts
} Can be minimized by client assuming server configuration
} Example: don't wait for <stream:features>

} Once running
} Stanza size matters: try to stay under 8kB,

take larger blocks out of band if possible
} Configure federation to keep links open,

first stanza will be slow
} Beware of DoS protection, "karma"

Reading List

} RFCs
} 6120: Core
} 6121: IM & Presence
} 5122: XMPP URIs

} XEP highlights
} 4: Forms
} 30: Disco
} 45: Chat rooms
} 60: Pub/Sub
} 71: XHTML
} 115: Capabilities
} 163: PEP

http://xmpp.org/rfcs/
http://xmpp.org/rfcs/rfc6120.html
http://xmpp.org/rfcs/rfc6121.html
http://xmpp.org/rfcs/rfc5122.html
http://xmpp.org/extensions/
http://xmpp.org/extensions/xep-0004.html
http://xmpp.org/extensions/xep-0030.html
http://xmpp.org/extensions/xep-0045.html
http://xmpp.org/extensions/xep-0060.html
http://xmpp.org/extensions/xep-0071.html
http://xmpp.org/extensions/xep-0115.html
http://xmpp.org/extensions/xep-0163.html

Advantages of XMPP
} The primary advantage is XMPP's decentralized nature.
} XMPP works similar to email, operating across a distributed network of

transfer agents rather than relying on a single, central server or broker (as
CoAP and MQTT do).

} As with email, it’s easy for anyone to run their own XMPP server, allowing
device manufacturers and API operators to create and manage their own
network of devices.

} And because anyone can run their own server, if security is required, that
server could be isolated on a company intranet behind secure authentication
protocols using built-in TLS encryption.

Disadvantages of XMPP
} One of the largest flaws is the lack of end-to-end encryption. While there

are many use cases in which encryption may not yet be necessary, most IoT
devices will ultimately need it. The lack of end-to-end encryption is a major
downside for IoT manufacturers.

https://wiki.xmpp.org/web/XMPP_E2E_Security

} Another downside is the lack of Quality of Service (QoS). Making sure that
messages are delivered is even more important in the IoT world than it was
in the instant messaging world. If your alarm system doesn’t receive the
message to turn itself on, then that vacation you’ve been planning could
easily be ruined.

Q and A

